Gradient vs finite difference#

# NBVAL_SKIP
from jax import config
import os
import jax

print(jax.devices())
# NBVAL_SKIP
import os
os.environ['SPS_HOME'] = '/home/annalena/sps_fsps'

Load ssp template from FSPS#

# NBVAL_SKIP
from rubix.spectra.ssp.factory import get_ssp_template
ssp_fsps = get_ssp_template("FSPS")
# NBVAL_SKIP
age_values = ssp_fsps.age
print(age_values.shape)

metallicity_values = ssp_fsps.metallicity
print(metallicity_values.shape)
# NBVAL_SKIP
index_age = 90
index_metallicity = 9

#initial_metallicity_index = 5
#initial_age_index = 70
initial_metallicity_index = 10
initial_age_index = 104

learning_all = 1e-2
tol = 1e-10

print(f"start age: {age_values[initial_age_index]}, start metallicity: {metallicity_values[initial_metallicity_index]}")
print(f"target age: {age_values[index_age]}, target metallicity: {metallicity_values[index_metallicity]}")

Configure pipeline#

# NBVAL_SKIP
from rubix.core.pipeline import RubixPipeline
import os
config = {
    "pipeline":{"name": "calc_gradient",},
    
    "logger": {
        "log_level": "DEBUG",
        "log_file_path": None,
        "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    },
    "data": {
        "name": "IllustrisAPI",
        "args": {
            "api_key": os.environ.get("ILLUSTRIS_API_KEY"),
            "particle_type": ["stars"],
            "simulation": "TNG50-1",
            "snapshot": 99,
            "save_data_path": "data",
        },
        
        "load_galaxy_args": {
        "id": 14,
        "reuse": True,
        },
        
        "subset": {
            "use_subset": True,
            "subset_size": 2,
        },
    },
    "simulation": {
        "name": "IllustrisTNG",
        "args": {
            "path": "data/galaxy-id-14.hdf5",
        },
    
    },
    "output_path": "output",

    "telescope":
        {"name": "TESTGRADIENT",
         "psf": {"name": "gaussian", "size": 5, "sigma": 0.6},
         "lsf": {"sigma": 1.2},
         "noise": {"signal_to_noise": 100,"noise_distribution": "normal"},
         },
    "cosmology":
        {"name": "PLANCK15"},
        
    "galaxy":
        {"dist_z": 0.1,
         "rotation": {"type": "edge-on"},
        },
        
    "ssp": {
        "template": {
            "name": "FSPS"
        },
        "dust": {
                "extinction_model": "Cardelli89",
                "dust_to_gas_ratio": 0.01,
                "dust_to_metals_ratio": 0.4,
                "dust_grain_density": 3.5,
                "Rv": 3.1,
            },
    },        
}
# NBVAL_SKIP
pipe = RubixPipeline(config)
inputdata = pipe.prepare_data()
output = pipe.run_sharded(inputdata)

Set target values#

# NBVAL_SKIP
import jax.numpy as jnp

inputdata.stars.age = jnp.array([age_values[index_age], age_values[index_age]])
inputdata.stars.metallicity = jnp.array([metallicity_values[index_metallicity], metallicity_values[index_metallicity]])
inputdata.stars.mass = jnp.array([[1.0], [1.0]])
inputdata.stars.velocity = jnp.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
inputdata.stars.coords = jnp.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
# NBVAL_SKIP
targetdata = pipe.run_sharded(inputdata)
# NBVAL_SKIP
print(targetdata[0,0,:].shape)

Set initial datracube#

# NBVAL_SKIP
inputdata.stars.age = jnp.array([age_values[initial_age_index], age_values[initial_age_index]])
inputdata.stars.metallicity = jnp.array([metallicity_values[initial_metallicity_index], metallicity_values[initial_metallicity_index]])
inputdata.stars.mass = jnp.array([[1.0], [1.0]])
inputdata.stars.velocity = jnp.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
inputdata.stars.coords = jnp.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
# NBVAL_SKIP
initialdata = pipe.run_sharded(inputdata)

Adam optimizer#

# NBVAL_SKIP
from rubix.pipeline import linear_pipeline as pipeline

pipeline_instance = RubixPipeline(config)

pipeline_instance._pipeline = pipeline.LinearTransformerPipeline(
    pipeline_instance.pipeline_config, 
    pipeline_instance._get_pipeline_functions()
)
pipeline_instance._pipeline.assemble()
pipeline_instance.func = pipeline_instance._pipeline.compile_expression()
# NBVAL_SKIP
import optax

def loss_only_wrt_age_metallicity(age, metallicity, base_data, target):
        
        base_data.stars.age = age*20
        base_data.stars.metallicity = metallicity*0.05

        output = pipeline_instance.func(base_data)
        #loss = jnp.sum((output.stars.datacube - target) ** 2)
        #loss = jnp.sum(optax.l2_loss(output.stars.datacube, target.stars.datacube))
        #loss = jnp.sum(optax.huber_loss(output.stars.datacube, target.stars.datacube))
        loss = jnp.sum(optax.cosine_distance(output.stars.datacube, target))
        
        return jnp.log10(loss) #loss#/0.03 #jnp.log10(loss #/5e-5)
#NBVAL_SKIP
import jax

def compute_gradient(age, metallicity, base_data, target):
    loss, grad_fn = jax.value_and_grad(loss_only_wrt_age_metallicity, argnums=(0,1))
    grads = grad_fn(age, metallicity, base_data, target)
    return grads, loss
#NBVAL_SKIP
#calculate gradient with jax
age_init = jnp.array([age_values[initial_age_index]/20, age_values[initial_age_index]/20])
metallicity_init = jnp.array([metallicity_values[initial_metallicity_index]/0.05, metallicity_values[initial_metallicity_index]/0.05])


# Pack both initial parameters into a dictionary.
params_init = {'age': age_init, 'metallicity': metallicity_init}
print(f"Initial parameters: {params_init}")

data = inputdata
target_value = targetdata

loss, grads = jax.value_and_grad(lambda p: loss_only_wrt_age_metallicity(p['age'], p['metallicity'], data, target_value))(params_init)

print("grads:", grads)
print("loss:", loss)
#NBVAL_SKIP
#calculate finite differnce
import jax
import jax.numpy as jnp
from jax.flatten_util import ravel_pytree

# 1) Skalares Loss über das ganze Param-PyTree
f = lambda p: loss_only_wrt_age_metallicity(p['age'], p['metallicity'], data, target_value)

# 2) Finite-Difference-Gradient (zentral) für beliebiges PyTree
def finite_diff_grad(f, params, eps=1e-5):
    flat, unravel = ravel_pytree(params)
    def f_flat(x): return f(unravel(x))

    def fd_i(i):
        e_i = jnp.zeros_like(flat).at[i].set(1.0)
        return (f_flat(flat + eps*e_i) - f_flat(flat - eps*e_i)) / (2*eps)

    g_flat = jax.vmap(fd_i)(jnp.arange(flat.size))
    return unravel(g_flat)

# 3) Anwenden: JAX-Grad + FD-Grad berechnen und vergleichen
grads_fd = finite_diff_grad(f, params_init, eps=1e-2)
print("grads_fd:", grads_fd)
# NBVAL_SKIP
import matplotlib.pyplot as plt

# eps-Werte, über die wir scannen
eps_values = jnp.logspace(-6, -1, 20)  # von 1e-6 bis 1e-1

age_fd_values = []
metal_fd_values = []

for eps in eps_values:
    g_fd = finite_diff_grad(f, params_init, eps=float(eps))
    # g_fd hat die gleiche Struktur wie params_init:
    # {'age': array([..,..]), 'metallicity': array([..,..])}
    # Beispiel: nimm hier den Mittelwert pro Array
    age_fd_values.append(float(jnp.mean(g_fd['age'])))
    metal_fd_values.append(float(jnp.mean(g_fd['metallicity'])))

plt.figure(figsize=(7,5))
plt.semilogx(eps_values, age_fd_values, 'o-', label="age grad (FD)")
plt.semilogx(eps_values, metal_fd_values, 's-', label="metallicity grad (FD)")

# horizontale Linien = JAX-Gradient
plt.axhline(float(grads['age'][0]), color='C0', linestyle='--', label="age grad (JAX)")
plt.axhline(float(grads['metallicity'][0]), color='C1', linestyle='--', label="metalicity grad (JAX)")

plt.xlabel("Step size")
plt.ylabel("Derivation")
# plt.title("Gradient vs finite difference step size")
plt.legend()
plt.grid(True)
plt.savefig("output/optimisation_finite_diff.jpg", dpi=1000)
plt.show()