rubix.telescope package#

Subpackages#

Submodules#

rubix.telescope.apertures module#

This class defines the aperture mask for the observation of a galaxy.

rubix.telescope.apertures.CIRCULAR_APERTURE(sbin: int64) Float[Array, '...'][source]#

Creates a circular aperture mask for the observation of a galaxy.

Parameters:

sbin (int) – The size of the spatial bin in each direction for the aperture mask.

Returns:

A jnp.ndarray 1D array of the aperture mask.

rubix.telescope.apertures.HEXAGONAL_APERTURE(sbin: int64) Float[Array, '...'][source]#

Creates a hexagonal aperture mask for the observation of a galaxy.

Parameters:

sbin (int) – The size of the spatial bin in each direction for the aperture mask.

Returns:

A jnp.ndarray 1D array of the aperture mask.

rubix.telescope.apertures.SQUARE_APERTURE(sbin: int64) Float[Array, '...'][source]#

Creates a square aperture mask for the observation of a galaxy.

Parameters:

sbin (int) – The size of the spatial bin in each direction for the aperture mask.

Returns:

A jnp.ndarray 1D array of the aperture mask.

rubix.telescope.base module#

class rubix.telescope.base.BaseTelescope(fov: float | int, spatial_res: float | int, wave_range: List[float], wave_res: float | int, lsf_fwhm: float | int, signal_to_noise: float | None, sbin: int64, aperture_region: Float[Array, '...'] | Int[Array, '...'], pixel_type: str, wave_seq: Float[Array, '...'], wave_edges: Float[Array, '...'])[source]#

Bases: Module

Base class for the telescope module. This class contains the base parameters for the telescope module.

Parameters:
  • fov (float) – The field of view of the telescope.

  • spatial_res (float) – The spatial resolution of the telescope.

  • wave_range (list) – The wavelength range of the telescope.

  • wave_res (float) – The wavelength resolution of the telescope.

  • lsf_fwhm (float) – The full width at half maximum of the line spread function.

  • signal_to_noise (float) – The signal to noise ratio of the telescope.

  • sbin (int) – The size of the spatial bin in each direction for the aperture mask.

  • aperture_region (jnp.ndarray) – The aperture region of the telescope.

  • pixel_type (str) – The type of pixel used in the telescope.

  • wave_seq (jnp.ndarray) – The wavelength sequence of the telescope.

  • wave_edges (jnp.ndarray) – The wavelength edges of the telescope.

aperture_region: Float[Array, '...'] | Int[Array, '...']#
fov: float | int#
lsf_fwhm: float | int#
pixel_type: str#
sbin: int64#
signal_to_noise: float | None#
spatial_res: float | int#
wave_edges: Float[Array, '...']#
wave_range: List[float]#
wave_res: float | int#
wave_seq: Float[Array, '...']#

rubix.telescope.factory module#

class rubix.telescope.factory.TelescopeFactory(telescopes_config: dict | str | None = None)[source]#

Bases: object

create_telescope(name: str) BaseTelescope[source]#

Function to create a telescope object from the given configuration.

Parameters:

name (str) – The name of the telescope to create.

Returns:

The telescope object as BaseTelescope.

Example 1 (Uses the defined telescope configuration)#

>>> from rubix.telescope import TelescopeFactory
>>> telescope_config = {
...     "MUSE": {
...         "fov": 5,
...         "spatial_res": 0.2,
...         "wave_range": [4700.15, 9351.4],
...         "wave_res": 1.25,
...         "lsf_fwhm": 2.51,
...         "signal_to_noise": None,
...         "wave_centre": 6975.775,
...         "aperture_type": "square",
...         "pixel_type": "square"
...     }
... }
>>> factory = TelescopeFactory(telescope_config)
>>> telescope = factory.create_telescope("MUSE")
>>> print(telescope)

Example 2 (Uses the default telescope configuration)#

>>> from rubix.telescope import TelescopeFactory
>>> factory = TelescopeFactory()
>>> telescope = factory.create_telescope("MUSE")
>>> print(telescope)

rubix.telescope.utils module#

rubix.telescope.utils.calculate_spatial_bin_edges(fov: float, spatial_bins: int64, dist_z: float, cosmology: BaseCosmology) Tuple[Int[Array, '...'] | Float[Array, '...'], float | int | Int[Array, '...'] | Float[Array, '...']][source]#

Calculate the bin edges for the spatial bins.

Parameters:
  • fov (float) – field of view of the telescope.

  • spatial_bins (float) – number of spatial bins.

  • dist_z (float) – redshift of the galaxy.

  • cosmology (BaseCosmology) – cosmology object.

Returns:

The bin edges for the spatial bins and the spatial bin size as jnp.array.

rubix.telescope.utils.calculate_wave_edges(wave_bin_edges: Float[Array, '...'], wave_res: float) Float[Array, '...'][source]#

Calculate the bin edges for the wavelength bins.

Parameters:
  • wave_bin_edges (jnp.array) – The bin edges for the wavelength bins.

  • wave_res (float) – The resolution of the wavelength bins.

Returns:

The bin edges for the wavelength bins as jnp.array.

rubix.telescope.utils.calculate_wave_seq(wave_range: List[float], wave_res: float) Float[Array, '...'][source]#

Calculate the wavelength sequence for the wavelength bins.

Parameters:
  • wave_range (Tuple[float, float]) – The range of the wavelength bins.

  • wave_res (float) – The resolution of the wavelength bins.

Returns:

The bin edges for the wavelength bins as jnp.array.

rubix.telescope.utils.mask_particles_outside_aperture(coords: Float[Array, '* 3'] | Int[Array, '* 3'], spatial_bin_edges: Float[Array, '...'] | Int[Array, '...']) Bool[Array, '...'][source]#

Mask the particles that are outside the aperture.

Parameters:
  • coords (jnp.array) – The particle coordinates.

  • spatial_bin_edges (jnp.array) – The bin edges for the spatial bins.

Returns:

A boolean mask as jnp.array that is True for particles that are inside the aperture and False for particles that are outside the aperture.

rubix.telescope.utils.square_spaxel_assignment(coords: Int[Array, '...'] | Float[Array, '...'], spatial_bin_edges: Int[Array, '...'] | Float[Array, '...']) Int[Array, '...'][source]#

Bin the particle coordinates into a 2D image with the given bin edges for square pixels.

This function takes the particle coordinates and bins them into a 2D image with the given bin edges. The binning is done by digitizing the x and y coordinates of the particles and then calculating the flat indices of the 2D image.

The returned indexes are the pixel assignments of the particles. Indexing starts at 0.

Parameters:
  • coords (jnp.array) – The particle coordinates.

  • spatial_bin_edges (jnp.array) – The bin edges for the spatial bins.

Returns:

The flat pixel assignments of the particles as jnp.array. Indexing starts at 0.

Example (Assing two particles to the spatial matching bins)#

>>> from rubix.telescope.utils import square_spaxel_assignment
>>> import matplotlib.pyplot as plt
>>> from matplotlib.colors import ListedColormap
>>> from jaxtyping import Float, Array
>>> import jax.numpy as jnp
>>> import numpy as np
>>> # Define the particle coordinates
>>> coords = np.array([[0.5, 1.5], [2.5, 3.5]])
>>> # Define the spatial bin edges
>>> spatial_bin_edges = np.array([0, 1, 2, 3, 4])
>>> # Compute the pixel assignments
>>> pixel_assignments = square_spaxel_assignment(coords, spatial_bin_edges)
>>> # Plot the results
... plt.figure(figsize=(10, 5))
... # Plotting the particles with labels
... plt.subplot(1, 2, 1)
... scatter = plt.scatter(coords[:, 0], coords[:, 1])
... plt.colorbar(scatter, ticks=np.arange(0, max_assignment + 1))
... plt.title('Particle Coordinates and Pixel Assignments')
... plt.xlabel('X Coordinate')
... plt.ylabel('Y Coordinate')
... plt.xlim(spatial_bin_edges[0], spatial_bin_edges[-1])
... plt.ylim(spatial_bin_edges[0], spatial_bin_edges[-1])
... # Label each point with its pixel index
... for i, (x, y) in enumerate(coords[:, :2]):
...     plt.text(x, y, str(pixel_assignments[i]), color='red', fontsize=8)
... #create the bins
... for edge in spatial_bin_edges:
...     plt.axvline(edge, color='k', linestyle='--')
...     plt.axhline(edge, color='k', linestyle='--')
... plt.tight_layout()
... plt.show()

Module contents#